September 7, 2024

Home Inspection

Home Inspection, Primary Monitoring for Your Home

Arresting failure propagation in buildings through collapse isolation

5 min read
Arresting failure propagation in buildings through collapse isolation
  • National Institute of Standards and Technology (NIST). Champlain Towers South collapse. NIST (2022).

  • Jones, M. Nigeria’s Ikoyi building collapse: anger and frustration grows. BBC News (4 November 2021).

  • Berg, R. Iran building collapse death toll jumps to 26. BBC News (27 May 2022).

  • Corres Peiretti, H. & Romero Rey, E. Reconstrucción “Módulo D” aparcamiento Madrid Barajas T-4. In IV Congreso de Asociación científico-técnica del hormigón estructural (ACHE) (2008).

  • Manik, J. A. & Yardley, J. Building collapse in Bangladesh leaves scores dead. The New York Times (24 April 2013).

  • Caredda, G. et al. Learning from the progressive collapse of buildings. Dev. Built Environ. 15, 100194 (2023).

    Article 

    Google Scholar 

  • Adam, J. M., Parisi, F., Sagaseta, J. & Lu, X. Research and practice on progressive collapse and robustness of building structures in the 21st century. Eng. Struct. 173, 122–149 (2018).

    Article 

    Google Scholar 

  • European Committee for Standardization (CEN). EN 1991-1-7:2006: Eurocode 1 – Actions on Structures – Part 1-7: General Actions – Accidental Actions (CEN, 2006).

  • Department of Defense (DoD). UFC 4-023-03. Design of Buildings to Resist Progressive Collapse, 34–37 (2016).

  • Loizeaux, M. & Osborn, A. E. Progressive collapse—an implosion contractor’s stock in trade. J. Perform. Constr. Facil. 20, 391–402 (2006).

    Article 

    Google Scholar 

  • United Nations Office for Disaster Risk Reduction (UNDRR). The Human Cost of Disasters: An Overview of the Last 20 Years (2000–2019). (UNDRR, 2020).

  • Wake, B. Buildings at risk. Nat. Clim. Change 11, 642 (2021).

    Article 
    ADS 

    Google Scholar 

  • Starossek, U. Progressive Collapse of Structures (ICE, 2017).

  • Moehle, J. P., Elwood, K. J. & Sezen, H. Gravity load collapse of building frames during earthquakes. in SP-197: S.M. Uzumeri Symposium – Behavior and Design of Concrete Structures for Seismic Performance (American Concrete Institute, 2002).

  • Gurley, C. Progressive collapse and earthquake resistance. Pract. Period. Struct. Des. Constr. 13, 19–23 (2008).

    Article 

    Google Scholar 

  • Lu, X., Lu, X., Guan, H. & Ye, L. Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes. Earthq. Eng. Struct. Dyn. 42, 705–723 (2013).

    Article 

    Google Scholar 

  • Tellman, B. et al. Satellite imaging reveals increased proportion of population exposed to floods. Nature 596, 80–86 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rentschler, J. et al. Global evidence of rapid urban growth in flood zones since 1985. Nature 622, 87–92 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cantelmo, C. & Cuomo, G. Hydrodynamic loads on buildings in floods. J. Hydraul. Res. 59, 61–74 (2021).

    Article 

    Google Scholar 

  • Lonetti, P. & Maletta, R. Dynamic impact analysis of masonry buildings subjected to flood actions. Eng. Struct. 167, 445–458 (2018).

    Article 

    Google Scholar 

  • Li, Y. & Ellingwood, B. R. Hurricane damage to residential construction in the US: Importance of uncertainty modeling in risk assessment. Eng. Struct. 28, 1009–1018 (2006).

    Article 

    Google Scholar 

  • Khanduri, A. & Morrow, G. Vulnerability of buildings to windstorms and insurance loss estimation. J. Wind Eng. Ind. Aerodyn. 91, 455–467 (2003).

    Article 

    Google Scholar 

  • Ozturk, U. et al. How climate change and unplanned urban sprawl bring more landslides. Nature 608, 262–265 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Luo, H. Y., Zhang, L. L. & Zhang, L. M. Progressive failure of buildings under landslide impact. Landslides 16, 1327–1340 (2019).

    Article 

    Google Scholar 

  • Thöns, S. & Stewart, M. G. On the cost-efficiency, significance and effectiveness of terrorism risk reduction strategies for buildings. Struct. Saf. 85, 101957 (2020).

    Article 

    Google Scholar 

  • Ellingwood, B. et al. NISTIR 7396: Best Practices for Reducing the Potential for Progressive Collapse in Buildings (National Institute of Standards and Technology, 2007).

  • Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article 
    PubMed 

    Google Scholar 

  • United Nations Office for Disaster Risk Reduction (UNDRR). Principles for Resilient Infrastructure (UNDRR, 2022).

  • General Services Administration (GSA). Alternate Path Analysis & Design Guidelines for Progressive Collapse Resistance (GSA, 2016).

  • Izzuddin, B. A. & Sio, J. Rational horizontal tying force method for practical robustness design of building structures. Eng. Struct. 252, 113676 (2022).

    Article 

    Google Scholar 

  • Starossek, U. & Wolff, M. Design of collapse-resistant structures. In JCSS and IABSE Workshop on Robustness of Structures (2005).

  • Russell, J. M., Sagaseta, J., Cormie, D. & Jones, A. E. K. Historical review of prescriptive design rules for robustness after the collapse of Ronan Point. Structures 20, 365–373 (2019).

    Article 

    Google Scholar 

  • Cormie, D. Manual for the Systematic Risk Assessment of High-Risk Structures Against Disproportionate Collapse (The Institution of Structural Engineers, 2013).

  • Baban, N. S., Orozaliev, A., Kirchhof, S., Stubbs, C. J. & Song, Y.-A. Biomimetic fracture model of lizard tail autotomy. Science 375, 770–774 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, Y., Okudan, G. E. & Riley, D. R. Sustainable performance criteria for construction method selection in concrete buildings. Autom. Constr. 19, 235–244 (2010).

    Article 

    Google Scholar 

  • fib Commission 6. Guide to Good Practice: Structural Connections for Precast Concrete Buildings, Bulletin 43 (fib, 2008).

  • European Committee for Standardization (CEN). EN 1990:2002: Eurocode 0 – Basis of Structural Design (CEN, 2002).

  • American Society of Civil Engineers (ASCE). Standard for Mitigation of Disproportionate Collapse Potential in Buildings and Other Structures (American Society of Civil Engineers, 2023).

  • Lew, H. S. et al. NIST Technical Note 1720: An Experimental and Computational Study of Reinforcd Concrete Assemblies Under a Column Removal Scenario (NIST, 2011).

  • American Society of Civil Engineers. ASCE 7-2002: Minimum Design Loads for Buildings and Other Structures (American Society of Civil Engineers, 2002).

  • fib Commission 2. Design and Assessment With Strut-and-Tie Models and Stress Fields: From Simple Calculations to Detailed Numerical Analysis, Bulletin 100 (fib, 2021).

  • Vecchio, F. J. & Collins, M. P. The modified compression-field theory for reinforced concrete elements subjected to shear. ACI Struct. J. 83, 219–231 (1986).

    Google Scholar 

  • Walraven, J. C. Fundamental analysis of aggregate interlock. J. Struct. Div. 107, 2245–2270 (1981).

    Article 

    Google Scholar 

  • Bentz, E. C. Response Manual (2019).

  • Bentz, E. C. Sectional Analysis of Reinforced Concrete Members. Doctoral dissertation, Univ. Toronto (2000).

  • Extreme Loading for Structures. Extreme Loading ® for Structures Theoretical Manual v.9 www.extremeloading.com/wp-content/uploads/els-v9-theoretical-manual.pdf (ASI, 2004).

  • Meguro, K. & Tagel-Din, H. Applied element method for structural analysis. Doboku Gakkai Ronbunshu 2000, 31–45 (2000).

    Article 

    Google Scholar 

  • Tagel-Din, H. & Meguro, K. Applied element method for dynamic large deformation analysis of structures. Doboku Gakkai Ronbunshu 2000, 1–10 (2000).

    Article 

    Google Scholar 

  • Tagel-Din, H. & Meguro, K. Analysis of a small scale RC building subjected to shaking table tests using applied element method. In 12th World Conference on Earthquake Engineering, Auckland, New Zealand (2000).

  • Tagel-Din, H. & Meguro, K. Applied element simulation for collapse analysis of structures. Bull. Earthq. Resist. Struct. 32, 113–123 (1999).

    Google Scholar 

  • European Committee for Standardization (CEN). EN 1992-1-1: Eurocode 2: Design of Concrete Structures – Part 1-1: General Rules and Rules for Buildings (CEN, 2004).

  • Precast/Prestressed Concrete Institute. PCI Design Handbook: Precast and Prestressed Concrete 7th edn (2010).

  • ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI, 2008).

  • Jun, X., Zhang, Y. & Shan, C. Compressive behavior of laminated neoprene bridge bearing pads under thermal aging condition. AIP Conf. Proc. 1890, 040018 (2017).

    Article 

    Google Scholar 

  • Maekawa, K. The Deformational Behavior and Constitutive Equation of Concrete Based on the Elasto-Plastic and Fracture Model. Doctoral dissertation, Univ. Tokyo (1985).

  • Okamura, H. & Maekawa, K. Non-linear analysis and constitutive models of reinforced concrete. In Conf. Computer-Aided Analysis and Design of Concrete Structures, Austria (1990).

  • Makoond, N., Shahnazi, G., Buitrago, M. & Adam, J. M. Corner-column failure scenarios in building structures: current knowledge and future prospects. Structures 49, 958–982 (2023).

    Article 

    Google Scholar 

  • Adam, J. M., Buitrago, M., Bertolesi, E., Sagaseta, J. & Moragues, J. J. Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario. Eng. Struct. 210, 110414 (2020).

    Article 

    Google Scholar 

  • Starossek, U. Progressive Collapse of Structures 2nd edn (ICE, 2017).

  • Zhao, Z., Guan, H., Li, Y., Xue, H. & Gilbert, B. P. Collapse-resistant mechanisms induced by various perimeter column damage scenarios in RC flat plate structures. Structures 59, 105716 (2024).

    Article 

    Google Scholar 

  • Makoond, N., Setiawan, A., Buitrago, M. & Adam, J. M. Arresting failure propagation in buildings through collapse isolation—experimental dataset. Zenodo (2024).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.